1. Francis L. Miksa, Table of quadratic partitions $x^{2}+y^{2}=N$, RMT 83, MTAC, v. 9, 1955, p. 198.
2. John Leech, "Some solutions of Diophantine equations," Proc. Cambridge Philos. Soc., v. 53, 1957, p. 778-780.

39[F].-David C. Mapes, Fast Method for Computing the Number of Primes less than a Given Limit, Lawrence Radiation Laboratory Report UCRL-6920, May 1962, Livermore, California. Table of 20 pages deposited in UMT File.

This report is the original writeup of [1]. The table in [1] gives $\pi(x), \operatorname{Li}(x)$, $R(x), L(x)-\pi(x)$ and $R(x)-\pi(x)$ for $x=10^{7}\left(10^{7}\right) 10^{9}$, where $\pi(x)$ is the number of primes $\leqq x$, and $L i(x)$ and $R(x)$ are Chebyshev's and Riemann's approximation formulas. The table here gives the same quantities for $x=10^{6}\left(10^{6}\right) 10^{9}$. It thus has greater "continuity," but not enough to trace the course of $\pi(x)$ unequivocally.

For example, Rosser and Schoenfeld [2] have recently proved that $\pi(x)<L i(x)$ for $x \leqq 10^{8}$. While it is highly probable that this inequality continues to $x=10^{9}$, the gaps here, of $\Delta x=10^{6}$, would appear to preclude a rigorous proof at this time. Study of the table, however, shows no value of x for which $\pi(x)$ approaches $\operatorname{Li}(x)$ sufficiently close to arouse much suspicion. The relevant function is

$$
P I(x)=\frac{L i(x)-\pi(x)}{\sqrt{x}} \log x
$$

and for $313 \leqq x \leqq 10^{8}$, Appel and Rosser [3] showed a minimum value of $P I(x)$, equal to 0.526 , at $x=30,909,673$. Here (and also in [1]) one finds values of 0.615 and 0.543 at $x=110 \cdot 10^{6}$ and $180 \cdot 10^{6}$, respectively. It is thus likely that a value of $P I(x)$ less than 0.526 can be found in the neighborhood of these x (especially the second), but it is unlikely that $P I(x)$ becomes negative there. The relevant theory [4] is made difficult by incomplete knowledge of the zeta function. In the second half of the table, $x>500 \cdot 10^{6}$, no close approaches at all are noted, and $L i(x)-\pi(x)$ exceeds 1000 there, except for $x=501 \cdot 10^{6}, 604 \cdot 10^{6}$, and $605 \cdot 10^{6}$.

The low values of $P I(x)$ are always associated with the condition $\pi(x)>R(x)$. The largest value of $R(x)-\pi(x)$ shown here is +914 , for $x=905 \cdot 10^{6}$.
D. S .

[^0]40[F].-J. Barkley Rosser \& Lowell Schoenfeld, "Approximate formulas for some functions of prime numbers," Illinois J. Math., v. 6, 1962, Tables I-IV on p. $90-93$.

The four number-theoretic tables reviewed here were presented by the authors in connection with their proofs of numerous inequalities concerning the distribution of primes. These inequalities include

$$
\frac{x}{\log x}\left(1+\frac{1}{2 \log x}\right)<\pi(x)<\frac{x}{\log x}\left(1+\frac{3}{2 \log x}\right) \quad(59 \leqq x)
$$

[^0]: 1. David C. Mapes, "Fast method for computing the number of primes less than a given limit, "Math. Comp., v. 17, 1963, p. 179-185.
 2. J. Barkley Rosser and Lowell Schoenfeld, "Approximate formulas for some functions of prime numbers," Illinois J. Math., v. 6, 1962, p. 64-94.
 3. Kenneth I. Appel and J. Barkley Rosser, Table for Functions of Primes, IDACRD Technical Report Number 4, 1961; reviewed in RMT 55, Math. Comp., v. 16, 1962, p. 500-501.
 4. A. E. Ingham, The Distribution of Prime Numbers, Cambridge Tract No. 30, Cambridge University Press, 1932.
